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Critical light scattering in liquids

G. Flossmann and R. Folk
Institute for Theoretical Physics, University of Linz, A-4040 Linz, Austria

~Received 21 March 2000!

We compare theoretical results for the characteristic frequency of the Rayleigh peak calculated in one-loop
order within the field theoretical method of the renormalization group theory with experiments and other
theoretical results. Our expressions describe the nonasymptotic crossover in temperature, density, and wave
vector. In addition we discuss the frequency dependent shear viscosity evaluated within the same model and
compare our theoretical results with recent experiments in microgravity.

PACS number~s!: 05.70.Jk, 64.60.Ht, 62.60.1v, 64.70.Fx
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I. INTRODUCTION

Dynamical critical phenomena manifest themselves i
singular temperature dependence of hydrodynamic trans
coefficients@1#. In pure fluids these transport coefficients a
the thermal conductivity and the shear viscosity, both dive
ing on approach of the critical point. In Ref.@2# the field
theoretic renormalization group~RG! theory has been use
for a quantitative description of this nonanalytic behav
and attention was given to the crossover to the analytic
havior in the background further away fromTc . The thermal
conductivity can be measured in two ways,~i! by measuring
the temperature difference when a heat current flows thro
the liquid ~this is an experiment at zero wave vectork!, and
~ii ! by light scattering experiments in the hydrodynamic
gion, where the wave vector and the temperature depen
correlation lengthj fulfill the relationkj!1. In the last case
the thermal diffusivityDT is measured which is related to th
thermal conductivitykT by DT5kT /(rCP) so that for a
comparison of the two experimental data the specific h
has to be known. For the thermal diffusivity and the sh
viscosity however theoretical calculations show that no ot
static quantity apart from the correlation length has to
known. This makes these two transport coefficients m
suitable to check the dynamical renormalization calculati

In light scattering experiments in liquids the characteris
frequencyvc , defined as the half width at half height of th
central Rayleigh peak, provides useful additional informat
about the dynamical properties of the system. Far away f
the critical point in the hydrodynamic region the charact
istic frequency is given byvc5DT(T,r)k2. Approaching the
critical point a crossover from the hydrodynamic to the s
called critical region (kj@1) takes place and finally a
(Tc ,rc) the characteristic frequency is a function of t
wave vector alone. Asymptotically near the critical point~for
very small values ofk) the power law behaviorvc;kz is
expected with the dynamical critical exponentz'3. Further
away, that means for larger wave vector modulus, a cro
over to the background behavior with a nonsingular therm
conductivity takes place. This is described by the van Ho
theory where the characteristic frequency behaves asvc
;k4.

It is the aim of this article to calculate the characteris
frequency in the whole (j,k)-plane within the nonasymptoti
RG theory in order to describe all types of crossover qu
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titatively. In addition the density dependence of the li
width is considered. The nonuniversal background para
eters entering the expression for the characteristic freque
are taken from other dynamical experiments, e.g., meas
ments of the shear viscosity. Recently very precise data
came available for xenon from experiments performed in
crogravity @3#. This allows also to reconsider the frequen
dependence of the shear viscosity within RG theory alre
discussed in Ref.@4#.

The results for pure fluids are also compared with lig
scattering experiments in polymer solutions and polym
blends. The nonasymptotic behavior in a mixture is not co
pletely described by the critical model for pure fluids@5# but
the asymptotics is the same. Therefore agreement shoul
found as long as the nonuniversal dynamic parameters
near to their fixed point values.

II. DYNAMIC MODEL

The dynamic order parameter correlation function for t
gas–liquid transition can be described within the modelH
@1#, which is a special case of the modelH8 described in
detail in Ref.@2#, containing dynamic equations for the ord
parameterf0 ~the entropy density! and the transverse mo
mentum densityjt ,

]f0

]t
5G° ¹2

dH

df0
2g° ~“f0!

dH

d j l
1Qf , ~2.1!

] jt
]t

5l° t¹
2
dH

d jt
1g°T H ~“f0!

dH

df0
2(

k
F j k“

dH

d j k
2¹k j

dH

d j k
G J

1Qt , ~2.2!

with fast fluctuating forcesQ i and the projectorT to the
direction of the transverse momentum density. The Ham
tonian appearing in the dynamic equations is the norm
Hamiltonian of af4-theory together with the conserved de
sity jt entering quadratically:

H5E ddxH 1

2
t°f0

21
1

2
~“f0!21

u°

4!
f0

41
1

2
aj j t

2J .

~2.3!
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PRE 62 2461CRITICAL LIGHT SCATTERING IN LIQUIDS
As described in Ref.@2# the dynamic equations may be tran
formed into a dynamic functional leading to dynamic vert
functions which can be calculated in perturbation theory.
general the dynamic scattering function is different from
Lorentzian due to fluctuation effects. This prediction of sc
ing theory has been observed in ferromagnets@6# and even
compared with RG calculations@7#. The same scaling argu
ments as for the ferromagnet also apply for pure fluids
though the deviation from a Lorentzian is expected to
smaller@8#. Moreover it turns out that in one-loop order the
are no frequency dependent contributions in the one-l
perturbation terms of the order parameter vertex functi
@9#. Therefore the shape of the dynamic correlation funct
is approximated by a Lorentzian and may be written as

xdyn~k,j,v!52xstRe@G° ff̃
21

~k,j,v!#5
xst~k,j!

vc~k,j!

2

11y2
,

~2.4!

in one-loop order withy5v/vc and the characteristic fre
quencyvc , defined as the half width at half height of th
Rayleigh peak. The width is given by the vertex functi
Gff̃(k,j,v50) so that the unrenormalized characteris
frequency reads

v° c~k,j!5G° k2~j221k2!S 11
f° t

2

jd24

3E ddp
1

11~x2p!2

sin2u

p2 D , ~2.5!

with x5kj, V5v/G° , and f° t5g° /AG° l° t after setting the pa-

rameterw° f5G° /ajl
°

t , which is irrelevant under renormaliza
tion, to zero. In full analogy to the renormalization of th
transport coefficients@2#, the pole in the unrenormalize
characteristic frequency may be absorbed intoZ-factors us-
ing field theoretic renormalization group theory. As we g
the sameZ-factors~and thus the same flow equations for t
Onsager coefficient and the mode coupling! as for the trans-
port coefficients we shall skip the details here.

III. CHARACTERISTIC FREQUENCY

A. General expression

After renormalization the characteristic frequencyvc is
finally found to be

vc~k,j!5G~ l !k2~j221k2!

3H 12
f t

2~ l !

16
@2516x22 ln~11x2!#J ,

~3.1!

in an e-expansion withe542d. The temperature depen
dence enters via the flow equations for the mode coup
and the Onsager coefficient,

f t
2~ l !5 f t*

2F11
l

l 0
S f t*

2

f 0
2

21D G21

, ~3.2!
n

-

l-
e

p
s
n

t

g

G~ l !5G0S f 0
2

f t*
2

l 0

l F11
l

l 0
S f t*

2

f 0
2

21D G D 12xh

, ~3.3!

with the one-loop fixed point value of the mode couplin
f t*

25 24
19 and the one-loop value of the exponentxh5 1

19 . The
connection between the flow parameterl and the correlation
length or the wave vector, respectively, is found from t
matching condition

~j0
21l !25j221k2, ~3.4!

for the Lorentzian approximation where the correlati
length may be expressed in terms of the reduced tempera
t via j5j0tn with n50.63 along the critical isochore. A
described in Ref.@4# we may use the cubic model to includ
noncritical values of the reduced density. In Eqs.~3.2!–~3.4!
G0 and f 0 are the initial values of the Onsager coefficient a
the mode coupling at an arbitrary reduced temperaturet0
along the critical isochore,l 0 is the solution of the matching
condition at t0 and k50, and j0 is the amplitude of the
correlation length. Equation~3.4! is the frequency indepen
dent matching condition which has been used since the
tex functionGff̃ , expressing the characteristic frequency
the Lorentzian approximation, is evaluated at zero frequen

We may rewrite Eq.~3.1! extracting the asymptotic ex
pressions for the Onsager coefficient and the mode coup

vc~k,x!5Gask
zS 11x2

x2 D 12xl/2

@cna~k,x!#xl f ~k,x!,

~3.5!

with x5kj and z542xl where the critical exponentxl is
given byxl512xh and has the one-loop valuexl5 18

19 . The
function f (k,x) is defined as

f ~k,x!512
f t*

2

16cna~k,x!
@2516x22 ln~11x2!#. ~3.6!

The nonasymptotic contributions are collected in

cna~k,x!5F11
k

k0
A11x2

x2 G , ~3.7!

so that the asymptotic region is characterized bycna(k,x)
51. Finally the asymptotic Onsager coefficientGas and the
crossover wave lengthk0 are given by

Gas5G0S f 0
2l 0

f t*
2j0

D xl

, k0
215S f t*

2

f 0
2

21D j0

l 0
. ~3.8!

The advantage of Eq.~3.5! over Eq.~3.1! is the clear sepa-
ration of the asymptotic and the nonasymptotic behav
which will make the discussion of the various limits of th
characteristic frequency easier. Before we come to that p
in the next section we should remark here that it is a
possible to evaluate the crossover function in three dim
sions@10# instead of performing ane-expansion. The char
acteristic frequency then reads
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vc~k,j!5G~ l !k2~j221k2!

3H 11 f t
2~ l !F2

3
A11x2

x2
arctanx2

3

4G J .

~3.9!

As expressions~3.1! and ~3.9! are almost identical afte
choosing the right initial values for the Onsager coefficie
@see Fig. 3 for a comparison of the asymptotic form of e
pressions~3.1! and ~3.9!# and the mode coupling we sha
only discuss thee-expansion result~also used for the evalu
ation of the transport coefficients in Refs.@2,4#! in the fol-
lowing.

B. Various limits of the characteristic frequency

First we should note that Eq.~3.5! yields a finite value for
the characteristic frequency in thehydrodynamiclimit x
→0,

lim
x→0

vc~k,j!5Gask
2j221xlF11

1

x0
GxlH 12

f t*
2

16 F11
1

x0
G21J ,

~3.10!

with x05k0j. Here the coefficient ofk2 is the nonasymptotic
expression for the temperature dependent thermal diffu
coefficientDT(j) discussed in Ref.@2,4# so that we can re-
write Eq. ~3.10! in the well-known formvc5DT(j)k2 for
the hydrodynamic region. Also in the oppositecritical limit
x→` we obtain a finite value for the characteristic fr
quency,

lim
x→`

vc~k,j!5vc~k!

5Gask
zF11

k

k0
GxlH 11

5 f t*
2

16 F11
k

k0
G21J ,

~3.11!

which is the wave vector dependent nonasymptotic exp
sion of the characteristic frequency. Both nonasymptotic
pressions allow to discuss the crossover from theasymptotic
limit jk0→` or k/k0→0 to thebackgroundlimit jk0→0 or
k/k0→`, respectively.

In the hydrodynamic case we obtain the limits

lim
jk0→`

vc~k,j!5Gask
2j221xlS 12

f t*
2

16 D , ~3.12!

lim
jk0→0

vc~k,j!5G0k2j22S 12
f 0

2

f t*
2D xl

, ~3.13!

where we used the expression fork0 given in Eq.~3.8! for
the last limit. In the background limit our expression reach
the van Hove behavior. In the critical region we obtain

lim
k/k0→0

vc~k!5Gask
zS 11

5 f t*
2

16 D , ~3.14!
t
-

n

s-
-

s

lim
k/k0→`

vc~k!5G0k4S 12
f 0

2

f t*
2D xl

, ~3.15!

where again we reach the van Hove theory for large val
of the ratiok/k0. This means that our results for the chara
teristic frequency describe the crossover in the correla
length ~from j221xl to j22) in the hydrodynamic region
characterized by the limitx→0 as well as the crossover i
the wave vector~from kz to k4) in the critical region charac-
terized by the limitx→`.

We have seen that with our nonasymptotic theory we
ways reach the van Hove behavior in the nonasymptotic li
for large values of the wave vector or small values or
correlation length, respectively. This is different from th
nonasymptotic mode coupling expression of Olchowy@11#,
where the characteristic frequency is given by

vc~k,j!5
kBT

6ph̄Bj
k2

3

4
~11x2!21/2@2yD1yd~11x2!1/2#,

~3.16!

with

yD5arctanxD ,

yd5~11xD
2 !21/2@2yD1arctan~xD~11xD

2 !21/2!#,
~3.17!

depending both on the nonuniversal parameterxD5qDj
which is similar to the parameterk0 appearing in our nonas
ymptotic theory. Equation~3.16! does not yield the van Hove
theory in the nonasymptotic region but instead becom
negative forx.2xD . This region of unphysical negative va
ues of the characteristic frequency is always reached at
stant correlation length when the wave vector becomes la
than the nonuniversal parameterqD . On the other hand the
parameterqD cannot be set to infinity as this limit yields a
unphysical divergence in the hydrodynamic limit forj→0
@11#.

C. Discussion of the crossover behavior

In the background we always reach the van Hove beh
ior for the characteristic frequency. This is a general feat
of our nonasymptotic theory. The parameter which descri
the crossover from the van Hove expression of the cha
teristic frequency to its asymptotic expression is in fact
value of the mode couplingf 0 which can take on values from
zero to the fixed point valuef t* . Note that this correspond
to a crossover ofk0 from its asymptotic limitk0→` to its
van Hove limitk0→0. The van Hove behavior forf 050,

vc
vH~k,x!5G0k4~11x22!, ~3.18!

is different from the background behavior at finitef 0 so that
we can define a background van Hove characteristic
quencyvc

BvH as

vc
BvH~k,x!5G0k4S 12

f 0
2

f t*
2D xl

~11x22!, ~3.19!
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PRE 62 2463CRITICAL LIGHT SCATTERING IN LIQUIDS
which we now always reach with our nonasymptotic theo
in the background limitjk0→0 or k/k0→`, respectively.

Now we can extract the background van Hove behav
from the full characteristic frequency given in Eq.~3.5!,

FIG. 1. Ratio of the characteristic frequencyvc divided by the
van Hove background expressionvc

BvH for f 050.1 or k05
7.9831023 Å 21, respectively~gray surface! where the ratio be-
comes 1 in the background limitj→0 andk→` and for f 0' f t*
~wire frame! where the van Hove expression is never reached by
asymptotic characteristic frequency.

FIG. 2. Comparison of our asymptotic and nonasymptotic~for
various values off 0 at constant correlation lengthj) results for
V(x)/x with the Ornstein–Zernike theory and the theoretical res
of Kawasaki Ref.@12#.
y

r

vc~k,x!5vc
BvH~k,x!~kj0!2xlS f 0

2

f t*
2
l 0D xl

3S 11x2

x2 D 2xl/2S cna~k,x!

12
f 0

2

f t*
2
D xl

f ~k,x!,

~3.20!

and plot the ratiovc /vc
BvH in order to demonstrate the cros

over behavior of the characteristic line width. This is done
Fig. 1 from which we see that the ratiovc /vc

BvH increases
near the critical point~characterized byj→` andk→0) as
the characteristic frequency then approaches its asymp
power law behavior, of course with nonuniversal amplitud
depending on value of the mode couplingf 0 in the back-
ground. This effect increases with increasing values of
mode couplingf 0. Especially we see that choosing the fixe
point valuef 05 f t* the surface of the characteristic frequen
never reaches a flat surface~corresponding to the van Hov
behavior!.

The crossover from the asymptotic power-law behavior
the critical region, where the characteristic frequency is p
portional tokz, to the van Hove behavior withvc}k4 in the
nonasymptotic background region can also be seen in Fi
where we compare our asymptotic and nonasymptotic res
with the van Hove theory and the result of Kawasaki@12#.
To do this we rewrite Eq.~3.5! extractingk2 instead ofkz,

e

lt

FIG. 3. Comparison of our asymptotic result forV(x)/x evalu-
ated in ane-expansion as well as in three dimensions with t
theoretical results of Kawasaki~Ref. @12#!, Paladin and Peliti~Ref.
@13#!, and Burstynet al. ~Ref. @14#!.
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vc
as~k,j!5

Gas

j11xh
k2~11x2!12xl/2@cna~k,x!#xl f ~k,x!

[
Gas

j11xh
k2V~x!, ~3.21!

and compare the various results for the functionV(x)/x at
constant correlation length instead ofvc itself. Therefore we

FIG. 4. The characteristic frequencyvc /G0k2 as a function of
the reduced temperaturet and the reduced densityDr in the hydro-
dynamic limit for k50.

FIG. 5. Comparison of the asymptotic~dashed lines! and non-
asymptotic~solid lines! expressions forvc /k2 with the Xe-data of
Ref. @16#. The sequence of the curves from top to bottom cor
sponds to decreasing modulus of the wave vector.
have to note that the functionV(x) defined in Eq.~3.21! is in
general not only a function ofx5kj but also of the wave
vector k which enters via the nonasymptotic functio
cna(k,x). But keeping the correlation length constant as
Fig. 2 we can expressk in terms ofx so thatV(x) is really
only a function ofx.

As Kawasaki’s result is proportional tok3 instead ofkz

the functionV(x)/x plotted in Fig. 2 becomes constant fo
large values ofx whereas our asymptotic result„character-
ized bycna(k,x)51… is proportional toxxh and the van Hove
theory tox. Our nonasymptotic results~at constant values o
the correlation lengthj) behave for large values ofx like the
van Hove theory and are therefore proportional tox. We also
see in this figure that the set-in of the crossover to the
Hove theory is determined by initial value of the mode co
pling f 0 which is the only free parameter in our nonasym
totic theory. We also should note that in Kawasaki’s theo
there is a different prefactor for the functionV(x) so that we
have normalized the functionV(x)/x so that the curves co
incide for x→0.

We can also use the functionV(x) defined in Eq.~3.21!
to compare our asymptotic result for the characteristic f
quency with other theories: In Fig. 3 we have plotted t
asymptotic result forV(x)/x @which is only a function ofx
as we havecna(k,x)51# as well as the theoretical results o
Kawasaki and Lo@12#, Paladin and Peliti@13#, and Burstyn
et al. @14#. As the other authors have a different prefactor
V(x) we have normalizedV(x) so that the curves coincid
for x→0. Again we see that the Kawasaki result forV(x)/x
becomes constant whereas the other results show the co

-

FIG. 6. Comparison of the asymptotic~dashed lines! and non-
asymptotic~solid lines! expressions forV(x)/x with the Xe-data of
Ref. @16#. The sequence of the nonasymptotic curves from top
bottom corresponds to decreasing modulus of the wave vector
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PRE 62 2465CRITICAL LIGHT SCATTERING IN LIQUIDS
xxh behavior for large values ofx. An essential difference
between our theory and the results of Refs.@12–14# is how-
ever that our nonasymptotic theory allows a more apt tre
ment of background than the purely asymptotic express
of Refs. @12–14#. In addition to this comparison we shou
note that at the critical dimensiond54 our result for the
characteristic frequency is identical with the result of Sig
et al. @15#.

And finally let us mention that we can extend our theo
to noncritical values of the density and calculate the cro
over in the characteristic frequency when we leave the c
cal isochore: Using the parametric representation to con
the correlation length to the reduced temperaturet5(T
2Tc)/Tc and the reduced densityDr5(r2rc)/rc @4#, we
are able to evaluate the correlation length as a functiont,
Dr, andk. In Fig. 4 we have plotted the characteristic fr
quency in the hydrodynamic limit fork50 as a function oft
andDr. We see that the characteristic frequency goes to z
in the critical limit t→0 and Dr→0 corresponding toj
→`.

IV. COMPARISON WITH EXPERIMENTS

A. Pure liquids

In Figs. 5–8 we compare our asymptotic and nonasym
totic results for the characteristic frequencyvc /k2 as a func-
tion of the reduced temperaturet and the functionV(x)/x as
a function of x with experiments in Xe and CO2 @16# ~all

FIG. 7. Comparison of the asymptotic~dashed lines! and non-
asymptotic~solid lines! expression forvc /k2 with the CO2-data of
Ref. @16#. The sequence of the curves from top to bottom cor
sponds to decreasing modulus of the wave vector.
t-
s

s-
i-
ct

ro

-

nonuniversal parameters are given in Table I!. As discussed
in Ref. @4# we can treat the exponentxl512xh as an addi-
tional free parameter so that we can fitf 0 and xh from the
experimental data~the initial value of the Onsager coefficien
G0 is determined by the value of the shear viscosity att0).
But this means that we need additional data for this fit. In
we have used the recent shear viscosity data of Berget al.
@3# discussed in the next section. Fitting the parameterf 0
from the characteristic frequency data~the exact value ofxh
does hardly affect the exponentxl512xh) and the expo-
nent xh from the shear viscosity data we find good agre
ment for the characteristic frequency~Figs. 5 and 6! as well
as for the frequency dependent shear viscosity~Figs. 11 and
12!. For CO2 we have takent0 , f 0, and G0 ~also given in
Table I! from the comparison of the shear viscosity and t
thermal diffusivity with experiments in Ref.@4# so that the
curves shown in Figs. 7 and 8 are obtained without any f
parameter!

As we can see in these figures the experimental data
not described correctly by our asymptotic expressions
only by the nonasymptotic expressions which show
crossover to the van Hove theory for large values of
reduced temperaturet or small values of the variablex, re-
spectively. Analogously any asymptotic theory@12–14# fails
to describe the experimental data correctly. In Ref.@16# this
problem was eliminated adding a regular background con
bution of the formvc

B5(lB/rcp)k2(11x2) to the critical
expression for the characteristic frequency withlB being the

-

FIG. 8. Comparison of the asymptotic~dashed lines! and non-
asymptotic~solid line! expressions forV(x)/x with the CO2-data of
Ref. @16#. The sequence of the nonasymptotic curves from top
bottom corresponds to decreasing modulus of the wave vector
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TABLE I. Nonuniversal parameters of Xe, CO2 , and polydisperse polystyrene~PDPS!.

Liquid j0@Å # t0 f 0 G0@cm4/s# xh n k0@cm21#

Xe 1.84 0.001 1.050 7.71310218 0.065 0.63 48.03105

CO2 1.60 1.000 0.251 2.62310218 0.063 0.63 32.83105

PDPS 4.60 0.100 0.350 2.52310220 0.065 0.70 4.663105
tr
th
fo
r
-

rv

n
th

-

-
hi
m
it

nd
is

otic
r
ts,

istic
ck-

ults

fs.

n

con-

e-
so-

re

e
s

regular part of the thermal conductivity andcp the full spe-
cific heat at constant pressure containing also critical con
butions. The use of the full specific heat together with
term 11x2 ensures the crossover to the van Hove theory
large values of the reduced temperature as well as for la
values of the wave vector~the background characteristic fre
quency is proportional tok2j22 for x→0 and tok4 for x
→`) so that the full characteristic frequencyvc5vc

C1vc
B

obtained by this procedure yields basically the same cu
as our nonasymptotic theory~see Fig. 6 of Ref.@16#!. In our
theory however we use a different form of the backgrou
characteristic frequency: Following the discussion of
regular background added to the transport coefficients@4# we
would have to add a background of the formvB

5DT
B(T,r)k22DT

B(Tc ,rc)k
2 to our results with the back

ground thermal diffusivity given byDT
B5lB/rcp

B and the
background specific heatcp

B containing only the regular tem
perature dependence without the critical singularity. As t
background term turns out to be negligibly small in the te
perature range shown in Figs. 5–8 we have neglected

FIG. 9. Comparison of the nonasymptotic characteristic f
quencyvc /k2 with the experimental data of Ref.@17# in a polymer
solution after subtracting the regular background. The sequenc
the curves from top to bottom corresponds to decreasing modulu
the wave vector.
i-
e
r

ge

es

d
e

s
-
so

that our asymptotic and nonasymptotic curves for Xe a
CO2 contain only the critical contributions discussed in th
article. So the main difference between our nonasympt
theory and the results of Refs.@12–14# is that the crossove
to the van Hove theory, which is clearly seen in experimen
is already contained in our expressions for the character
frequency and not added by an appropriate form of the ba
ground contribution

In Fig. 6 and 8 we also see that the nonasymptotic res
for V(x)/x do of course not collapse on a single curve~in
contrary to our asymptotic result and the theories of Re
@12–14#! as the nonasymptotic contributioncna does not only
depend on the variablex5kj but also on the wave vectork
and the correlation lengthj separately. This behavior ca
also be seen in the Xe and CO2 data in Fig. 6 and 8 although
the experimental data are not precise enough for a true
firmation of the validity of our nonasymptotic theory.

B. Polymer solutions and blends

And finally we apply our theory for the characteristic fr
quency to light scattering experiments in binary polymer

-

of
of FIG. 10. Comparison of the asymptotic expression forV(x)/x
with the experimental data of Ref.@18# in a polymer mixture.
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lutions: In Fig. 9 we compare our nonasymptotic theory
the characteristic frequencyvc /k2 as a function or the re
duced temperature with experimental data in a solution
polydisperse polystyrene~PDPS! in cyclohexane@17#. For
this figure the initial value of the Onsager coefficient w
determined from the value of the background shear visco
at the critical point also measured in Ref.@17#. The ampli-
tude of the correlation lengthj0 as well as the exponentsn
50.7 and xh50.065 were taken from the same artic
Therefore we have to note that the exponentn found by Ref.
@17# for the polymer solution is higher than the valuen
50.63 found for pure liquids or liquid mixtures. Fitting th
initial value of the mode couplingf 0, which is the only free
parameter in our theory, from the experimental data~all val-
ues given in Table I! we reach a satisfactory description
the experimental data although the curves for large w
vectors lie above the experimental data for small values
the reduced temperature. Nevertheless we have to note
the quality of the description cannot be compared to the
reached for Xe and CO2 as there are no detailed experime
tal data for the shear viscosity of this polymer solution in t
vicinity of the critical point available, so that an exact dete

mination ofh̄0 and thus ofG0 was not possible and also th
critical exponent had to be fixed and could not be fitted fr
the experiments.

However one crucial point remains: The fact that we ha
used the nonasymptotic theory developed for pure liquid
describe a polymer solution is of course a problem as liqu
and liquid mixtures do have the same asymptotic beha
but show a slightly different crossover to the nonasympto
behavior. But as an asymptotic theory is not able to desc
the experimental data~in the same way as we were not ab
to describe the characteristic frequency in pure liquids w
the asymptotic theory! and a nonasymptotic theory for crit
cal light scattering in mixtures has not yet been set up,
believe that the systematic errors made by applying a no
ymptotic theory for pure liquids to mixtures~which basically
means setting the additional parameterw3 found for the
transport coefficients in liquid mixtures@5# to zero! are rather
small and can be tolerated. In addition we have to note th
background characteristic frequency given in Ref.@17# was
subtracted from the experimental data as well as from
nonasymptotic results forvc /k2.
r
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In Fig. 10 we compare our asymptotic result for the fun
tion V(x)/x as well as the theoretical results of Kawasa
@12# and Burstynet al. @14# with experimental data in the
polymer blend of polydimethylsiloxane and polyethylmet
ylsiloxane @18#. As all these data are only available in
rather small range ofx we can apply the asymptotic theor
and avoid the discussion of the last paragraph. The use
nonasymptotic theory would also not be possible for a co
parison with these experimental data for a second reason
data shown in Fig. 10 were obtained for different tempe
tures and wave vectors but these different values ofk andj
were not indicated separately in the article but only the c
responding value ofx5kj. This was also the reason why w
could not fit the initial value of the Onsager coefficient
that the only fit parameter, the prefactor ofV(x), was set by
the choice that our result shall coincide with the result
Burstynet al. in the limit of small values ofx. In addition we
have to note that the experimental values for the funct
V(x) were obtained from the data for the characteristic f
quency dividing not by the full shear viscosity depending
the correlation length but only by its constant backgrou
value, so that we had to correct this, multiplying our theor
ical expression for the functionV(x) by x2xh. In any case
the experimental data shown in Fig. 10 are not prec
enough to favor any of the presented theoretical expressi

V. FREQUENCY DEPENDENT SHEAR VISCOSITY

Since we have used information from the shear visco
in the discussion of the light scattering line width we sh
add an analysis of the most recent shear viscosity data fo
@3# to this article. These new data allow a much more d
tailed analysis of the frequency dependent shear visco
leading to slightly different parameters than the discussion
the shear viscosity of Xe in Ref.@2# which was based on
older data. In Ref.@4# we have discussed the theoretical e
pression for the frequency dependent shear viscosity, wh
is given by

h̄~ t,Dr,v!5
kBT

4p

j0

l f t
2~ l !G~ l !

3@11Et „f t~ l !,v~ l !,w~ l !…#, ~5.1!

with the one-loop perturbational contribution
Et~ f t~ l !,v~ l !,w~ l !!52
f t

2

96H 116F i
v2

w
ln v1

1

v12v2
S v2

2

v1
ln v22

v1
2

v2
ln v1D G

2
4

~v12v2!3 Fv1
3 2v2

3

3
1

3

2
~v12v2!~v1

2 ln v11v2
2 ln v2!2~v1

3 ln v12v2
3 ln v2!G

1
2

~v12v2!2 Fv1
3

v2
~114 lnv1!1

v2
3

v1
~114 lnv2!

1S 1

v2
2

2

v12v2
D v1

4 ln v12v4 ln v

v2
1S 1

v1
1

2

v12v2
D v2

4 ln v22v4 ln v

v1
G J . ~5.2!
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The parameters introduced in Eq.~5.2! are defined as

v~ l !5
j22~ t !

~j0
21l !2

, w~ l ,v!5
v

2G~ l !~j0
21l !4

, ~5.3!

v6~ l ,v!5
v
2

6AS v
2D 2

1 iw, ~5.4!

with the mode couplingf t( l ) and the Onsager coefficien
G( l ) given by Eqs.~3.2! and ~3.3!. The mode coupling pa
rameterl is now a function of the correlation lengthj and
the frequencyv and results from the solution of the matc
ing condition@19#

S j0

j D 8

1S 2v

G~ l ! D
2

5 l 8. ~5.5!

At the moment of publication no experimental data we
available to compare them to our theoretical expressio
The situation has changed meanwhile as Berget al. @3# per-
formed shear viscosity experiments at small frequencies
microgravity environment onboard a space shuttle. Comp
ing their experimental results with the mode coupling the
@20#, they found that they could only describe their data c
rectly multiplying the frequency by a factor of 2 in the th
oretical expressions. They explained the introduction of t
factor as a two-loop effect correcting the errors of the o
loop expression used for the frequency dependent shear

FIG. 11. Comparison of the theoretical expression for the r
part of the shear viscosity in microgravity at various frequenc
with the experimental data of Ref.@3#. See text for details.
s.

a
r-
y
-
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-
is-

cosity. With this multiplicative factor for the frequency the
were able to reproduce the experimental data for the sh
viscosity very well.

In Figs. 11 and 12 we compare our theory with expe
mental data in microgravity and in the earth’s gravitation
field @3,21# fitting the exponentxh with f 0 taken from the
light scattering experiments of Ref.@16#. In doing so we
found xh50.065 instead of the valuexh50.069 used by
Berget al.We should note here that we can use the expon
xh50.069 ~with the initial values f 050.959 and G05
8.82310218 cm4/s) to get exactly the same theoretic
curves as shown in Figs. 11 and 12 but then we are not
to describe the characteristic frequency data correctly w
this choice off 0 andG0. This fact that the parametersf 0 and
xh cannot be determined unambiguously from the shear
cosity data alone was already discussed in detail in Ref.@4#.

In Figs. 11 and 12 it turns out that we can describe
experimental data in microgravity only if we multiply th
frequency by a factor of 5, which may be explained as c
rections to the one-loop expressions from higher order p
turbation contributions@22# and thus justified for the sam
reason as the factor of 2 in the mode coupling theory@3#. But
then we are able to describe not only the microgravity d
but also the earth-bound experiments very well with a sin
set of parameters shown in Table I. And once again let
mention that we have used the same set of paramete
describe the characteristic frequency in Xe correctly in Fi
5 and 6. As the experimental data shown in Fig. 12 cove
large range of reduced temperatures we had to add the r

l
s

FIG. 12. Comparison of the theoretical expressions for the
part of the shear viscosity in microgravity~at frequencies 0 and 2
Hz! as well as in earthbound experiments~for two different vessel
heights! with the experimental data of Refs.@3,21#.
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lar background contribution found in Ref.@21#, which is
completely independent of the critical behavior describ
within our model.

Berget al. did not only measure the real part of the she
viscosity but determined also the imaginary part ofh̄ from
the phase shift. In Ref.@3# they compared the mode couplin
result for the ratio Im(h̄)/Re(h̄) with their experimental data
and found good agreement. Comparing our results with th
experimental data we get less satisfactory results@23# be-
cause in our theory the ratio Im(h̄)/Re(h̄) approaches the
finite value,

lim
T→Tc

Im~ h̄ !

Re~ h̄ !
5

1

76

p

2 F12
1

76
$3 ln~1/4!21/3%G21

'0.0195,

~5.6!

at Tc which is different from the value 0.0353 obtained fro
the mode coupling theory with the exponentxh50.069 @3#
which turns out to be in good agreement with the experim
tal data. As the limit of the ratio Im(h̄)/Re(h̄) does not
contain any free parameter atTc it cannot be improved and
the deviation of our theory from the experiments may
explained by the fact that a one-loop order perturbat
theory is not able to describe such small effects~the imagi-
nary part of the shear viscosity is only about 3% of the to
complex shear viscosity! and therefore a two-loop theor
may be expected to yield much better agreement. In
respect we should also note that the mode coupling exp
sion used by Berget al. is not purely of one-loop order sinc
it makes use of the experimental value for the exponentxh
which differs significantly from its one-loop value. If w
insert the one-loop valuexh51/19 into the mode coupling
expressions we would get a limit Im(h̄)/Re(h̄)'0.0271 at
Tc which is also significantly lower than the measured li
iting ratio. So the main difference between the mode c
v.

v.

a

to
a

ge
ol
d

r

se

-

e
n

l

is
s-

-
-

pling theory and our theory is, that it is not possible to intr
duce the true critical exponentxh in our expression for
Im(h̄)/Re(h̄) and therefore deviations from the one-loop o
der perturbation theory cannot be weakened by the use o
correct value forxh .

VI. CONCLUSION

We were able to show that our one-loop perturbat
theory result for the characteristic frequency evalua
within the field theoretical method of the renormalizatio
group theory does not only reproduce the correct wave v
tor and correlation length dependence in the hydrodyna
region as well as in the critical region, but is also able
describe experimental data correctly for a large range
wave vectors and reduced temperatures. In addition
showed that also the result for the shear viscosity evalua
within the same model is in good agreement with expe
ments if a two-loop value for the critical exponent is take

There are however some points which indicate the n
for a two-loop analysis of the model: First we have seen t
in one-loop order the dynamic correlation function is alwa
of Lorentzian form whereas scaling theory@8# predicts de-
viations for large frequencies. Second we are not able to
the experimental limiting value for the ratio of the imagina
and real part of the frequency dependent shear visco
Im(h̄)/Re(h̄) at Tc and we have to introduce a multiplica
tive factor for the frequency in order to describe the expe
mental data correctly. This makes a profound two-lo
analysis inevitable which is currently in progress.
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